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Abstract

Large language models have shown promis-
ing results in zero-shot settings (Brown et al.,
2020; Radford et al., 2019). For example, they
can perform multiple choice tasks simply by
conditioning on a question and selecting the
answer with the highest probability.

However, ranking by string probability can
be problematic due to surface form compe-
tition—wherein different surface forms com-
pete for probability mass, even if they repre-
sent the same underlying concept in a given
context, e.g. “computer” and “PC.” Since
probability mass is finite, this lowers the prob-
ability of the correct answer, due to competi-
tion from other strings that are valid answers
(but not one of the multiple choice options).

We introduce Domain Conditional Pointwise
Mutual Information, an alternative scoring
function that directly compensates for sur-
face form competition by simply reweighing
each option according to its a priori likeli-
hood within the context of a specific task. It
achieves consistent gains in zero-shot perfor-
mance over both calibrated (Zhao et al., 2021)
and uncalibrated scoring functions on all GPT-
2 and GPT-3 models on a variety of multiple
choice datasets. *

1 Introduction

Despite the impressive results large pretrained lan-
guage models have achieved in zero-shot settings
(Brown et al., 2020; Radford et al., 2019), we
argue that current work underestimates the zero-
shot capabilities of these models on classification
tasks. This is in large part due to surface form
competition—a property of generative models that
causes probability to be rationed between different
valid strings, even ones that differ trivially, e.g.,
by capitalization alone. Such competition can be
largely removed by scoring choices according to

*Code is available at https://github.com/
peterwestuw/surface-form-competition

Figure 1: While humans select from given options, lan-
guage models implicitly assign probability to every pos-
sible string. This creates surface form competition be-
tween different strings that represent the same concept.
Example from CommonsenseQA (Talmor et al., 2019).

Domain Conditional Pointwise Mutual Informa-
tion (PMIDC), which reweighs scores by how much
more likely a hypothesis (answer) becomes given a
premise (question) within the specific task domain.

Specifically, consider the example question
(shown in Figure 1): “A human wants to sub-
merge himself in water, what should he use?” with
multiple choice options “Coffee cup”, “Whirlpool
bath”, “Cup”, and “Puddle.” From the given op-
tions, “Whirlpool bath” is the only one that makes
sense. Yet, other answers are valid and easier for a
language model to generate, e.g., “Bathtub” and “A
bathtub.” Since all surface forms compete for finite
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probability mass, allocating significant probability
mass to “Bathtub” decreases the amount of prob-
ability mass assigned to “Whirlpool bath.” While
the total probability of generating some correct
answer may be high (i.e., across all valid surface
forms), only one of these is a listed option. This is
particularly problematic here, because “Whirlpool
bath” will be much lower probability than “Bath-
tub,” due to its rarity. More generally, methods that
do not account for surface form competition will
favor answers with fewer lexical paraphrases.

PMIDC factors out the probability of a specific
surface form, by instead computing how much
more probable a hypothesis is when conditioned
on a premise. We use a domain premise string to
estimate the unconditional probability of a hypoth-
esis in a given domain. On CommonsenseQA, for
example, we compute the probability of each an-
swer option immediately following the string “? the
answer is:”, and then divide the conditional prob-
ability by this estimate to calculate PMIDC. This
scaling factor reweighs answer scores according
to the surface form competition that is inherent to
the domain or task, e.g. completions of the domain
premise that are just inherently unlikely will be up-
weighted more. This allows us to directly measure
how much an answer tells us about the question
and vice versa (mutual information is symmetric,
see §3). Valid hypotheses no longer need to com-
pete with each other: both “Whirlpool bath” and
“Bathtub ” will be considered reasonable answers
to the question, and so both will attain a high score.

Extensive experiments show that PMIDC consis-
tently outperforms raw, normalized, and calibrated
probability scoring methods on zero-shot multiple
choice for more than a dozen datasets and it does
so for every model in the GPT-2 and GPT-3 fami-
lies (§4); this holds true across different possible
prompts and in preliminary few-shot experiments
as well. To better explain these gains, we use the
distinct structure of the COPA dataset (Roemmele
et al., 2011) to remove surface form competition
entirely, showing that all methods perform well in
this idealized setting (§5). Additionally, we analyze
the only three datasets where PMIDC does worse
than other methods and put forward a hypothesis
for why normalizing log probabilities works bet-
ter than raw probabilities (§6). We conclude with
a discussion of how generative models should be
used for selection tasks (§7).

2 Background and Related Work

Zero-shot vs. Few-Shot Zero-shot inference has
long been of interest in NLP, Computer Vision, and
ML in general (Socher et al., 2013; Guadarrama
et al., 2013; Romera-Paredes and Torr, 2015). How-
ever, Radford et al. (2019) popularized the notion
that language models have many zero-shot capabil-
ities that can be discovered simply by prompting
the model, e.g., placing “TL;DR” (internet slang
for Too Long; Didn’t Read) at the end of a pas-
sage causes the model to generate a summary. Ef-
ficiently constructing the right prompt for a given
task is difficult and has become an active area of
research (Reynolds and McDonell, 2021; Lu et al.,
2021; Shin et al., 2020; Jiang et al., 2020a,b).

Brown et al. (2020) demonstrated that few-shot
learning without fine-tuning is possible with very
large language models. Contemporary work has
shown it is possible to get smaller models to ex-
hibit few-shot learning behavior using fine-tuning
(Hambardzumyan et al., 2021; Gao et al., 2020;
Schick and Schütze, 2020a,b,c; Shin et al., 2020),
an intermediate learning phase (Ye et al., 2021), or
calibration (Zhao et al., 2021), though most assume
access to a validation set (Perez et al., 2021). Re-
cent work suggests it may be possible to finetune
language models in order to improve their zero-
shot and few-shot capabilities on a large swathe of
tasks (Wei et al., 2021; Zhong et al., 2021).

Surface Form Competition When applying
generative models to multiple choice problems,
simply choosing the highest probability answer
becomes problematic due to different valid surface
forms competing for probability. Indeed, recent
work in question answering has demonstrated the
importance of considering all multiple choice op-
tions together (Khashabi et al., 2020), rather than
independently assigning each answer a score and
simply choosing the highest. This is a difficult strat-
egy to adapt to left-to-right generative language
models, which implicitly choose between all possi-
ble strings. Using unsupervised language models
pretrained on relatively expansive corpora exacer-
bates surface form competition because such lan-
guage models generate a much wider distribution
than a given question answering dataset contains.

“What is the most populous nation in North
America?” Posed with this question, a language
model such as GPT-3 can generate a correct re-
sponse such as “USA”, ”United States”, or “United



States of America” with high probability. While
correct strings like this all contribute to the proba-
bility of a correct generation, they may have vastly
different probabilities: a common string “United
States” will be much more likely than rarer forms
like “U.S. of A.”. In generative scenarios, as long as
most of the probability mass goes to valid strings
the generation is likely to be valid. This is not
the case for multiple choice problems. Given two
options, e.g., “USA” and “Canada”, GPT-3 will
choose the correct answer by probability. However,
if we substitute out “USA” for “U.S. of A.”, GPT-3
will assign higher probability to “Canada”, a less
likely answer conceptually, but a much more likely
surface form. Beyond this, incorrect generic an-
swers such as “I don’t know” are often assigned
high probability, relegating the desired answers to
the tail of the distribution where softmax is poorly
calibrated (Holtzman et al., 2020).

PMI Work in dialogue has used PMI to promote
diversity (Zhou et al., 2019; Yao et al., 2017; Li
et al., 2016; Mou et al., 2016; Tang et al., 2019).
Recently, Brown et al. (2020) used a scoring func-
tion resembling PMIDC for zero-shot question an-
swering, though they only use the string “A:” as a
prompt for the unconditional probability estimate,
whereas we use a task-specific domain premise (see
§3 for details). Furthermore, Brown et al. (2020)
only report this scoring method on three datasets
(ARC, OpenBookQA, and RACE, included here)
out of the more than 20 tested and do not compare
scores with their standard method, averaging log-
likelihoods (AVG in this work). In contrast, we
report a comprehensive comparison on GPT-3 and
GPT-2, as well as shedding light on the underlying
issue of surface form competition in §5.

Contextual Calibration Recently, Zhao et al.
(2021) describe a new method for calibrating the
probabilities of an LM using a learned affine trans-
formation. Though geared towards few-shot learn-
ing, the authors devise a clever means of using
“content free inputs” for zero-shot learning. Zhao
et al. (2021) calibrate for three forms of bias: (1)
majority label bias, (2) recency bias, and (3) com-
mon token bias. PMIDC directly compensates for
common token bias by dividing by the domain con-
ditional probability of each answer, and performs
superior to contextual calibration (CC) in the ma-
jority of cases.

Prompt Sensitivity Recent work highlights LM
sensitivity to inputs, and proposes to consider para-
phrases of the prompt to overcome this (Davison
et al., 2019; Jiang et al., 2020b), as well as noting
that certain trigger tokens (Shin et al., 2020) can
strongly effect the output of such models. In this
work, we focus on the surface form of possible
outputs, but do also analyze robustness to different
prompts in §4.4.

Interpreting Language Models Language mod-
els tend to model selectional preferences and the-
matic fit (Pantel et al., 2007; Erk et al., 2010) rather
than semantic plausibility (Wang et al., 2018).
Probability, possibility and plausibility are distinct
(Van der Helm, 2006), but reporting bias (Gordon
and Van Durme, 2013) means that language mod-
els only model what people are likely to write (on
websites that are easily crawled). PMIDC aims to
adjust for these challenges to better measure the un-
derlying agreement between language models and
human judgements, but of course is still subject to
the limits and biases of the language model used.

3 Zero-shot Scoring Strategies

This paper does not define any new modeling or
finetuning methods. Rather, we propose the broad
use of PMIDC scoring for any given model and
prompt. PMIDC compensates for the fact that differ-
ent correct answers compete for probability, even
though only one will be listed as the correct multi-
ple choice option.

We begin by describing the two most common
methods currently in use.

3.1 Standard Methods

Our first baseline is simply selecting the highest-
probability option, e.g., baselines in Zhao et al.
(2021) and Jiang et al. (2020b), which we refer to
as LM. Given a prompt x (e.g. “The bar closed”)
and a set of possible answers y1, · · · ,yn (e.g. “it
was crowded.”, “it was 3 AM.”), LM is defined:

argmax
i

P (yi|x). (1)

However, using length normalized log-likelihoods
(Brown et al., 2020) has become standard due to its
superior performance, and is also commonly used
in generation (Mao et al., 2019; Oluwatobi and
Mueller, 2020). For causal language models, e.g.,



Figure 2: An example from COPA (Roemmele et al., 2011) with the template we use as well as the scoring
functions we test. LM returns the highest probability option, while AVG length-normalizes log-likelihoods and
chooses the highest option. PMIDC is a measurement of the mutual information between hypothesis and premise,
intuitively how much x explains yi and vice versa. CC is an affine transform of LM, where w and b are averaged
over solutions that cause “content free inputs” to yield uniform scores over a given label set, see Zhao et al. (2021).

GPT-2 and GPT-3, Equation 1 can be decomposed:

P (yi|x) =
`i∏

j=1

P (yji |x, y
1
i , · · · , y

j−1
i )

where yji is the jth token of yi and `i is the number
of tokens in yi. The AVG strategy can thus be
defined as:

argmax
i

∑`i
j=1 logP (yji |x,y1···j−1)

`i
.

3.2 Domain Conditional PMI
Our core claim is that direct probability is not an
adequate zero-shot scoring function due to surface
form competition. A natural solution is to factor
out the probability of specific surface forms, which
is what Pointwise Mutual Information (PMI) does:

PMI(x,y) = log
P (y|x)
P (y)

= log
P (x|y)
P (x)

. (2)

In effect, this is how much more likely the hypoth-
esis (“it was 3 AM.”) becomes given the premise
(“The bar closed because”), see Figure 2 for the full
example. In a multiple-choice setting—where the
premise x does not change across hypotheses—this
is proportional to P (x|y), i.e. the probability of the
premise given the hypothesis. We call this scoring-
by-premise and it is the reverse of LM, P (y|x).
We use scoring-by-premise to show the presence
of surface form competition in §5.

While Equation 2 estimates how related premise
x is to hypothesis y in general, we found that es-
timates of P (y) vary wildly. GPT-2 and GPT-3
are not trained to produce unconditional estimates
of document excerpts, an issue which is exacer-
bated by the fact that many possible answers are
extremely rare in a large scrape of public web pages.
This causes the unconditional probability of such
answers to be poorly calibrated for the purposes of
a given task.

We are specifically trying to measure P (y) in a
given domain, e.g., for the “because” relation in our
running example, shown in Figures 2 & 3. To quan-
tify this, we propose Domain Conditional PMI:

PMIDC(x,y, domain) =
P (y|x, domain)
P (y|domain)

=
P (y|x, domain)
P (y|xdomain)

or how much x tells us about y within a domain.
Typically, P (y|x, domain) = P (y|x) because

the premise x typically implies the domain, e.g.,
“The bar closed because” sets the model up to pre-
dict an independent clause that is the cause of some
event, without further representation of the domain.
In order to estimate P (y|domain)—the probability
of seeing hypothesis y in a given domain—we use
a short domain-relevant string xdomain, which we
call a “domain premise”, usually just the ending of
the conditional premise x. For example, to predict
a causal relation like in Figure 2 we use xdomain =
“because” and thus divide by P (y|because)–how



likely y is to be a “cause” . For examples of each
template see Appendix B.

3.3 Non-standard Baselines
Unconditional We also compare to the uncondi-
tional (in-domain) estimate as a scoring function:

argmax
i

P (yi|xdomain).

We refer to this as UNC. It ignores the premise
completely, only using a domain premise xdomain
(e.g., using P (y|because) as the score). Yet, it
is sometimes competitive, for instance on BoolQ
(Clark et al., 2019). UNC is a sanity check on
whether zero-shot inference is actually using the
information in the question to good effect.

Contextual Calibration Finally, we compare
to the reported zero-shot numbers of Zhao et al.
(2021). Contextual Calibration adjusts LM with
an affine transform to make a closed set of answers
equally likely in the absence of evidence. Contex-
tual Calibration thus requires computing matrices
w and b for a number of “content free inputs” and
then averaging these weights, see Zhao et al. (2021)
for details. In contrast, PMIDC requires nothing but
a human-written template (as all zero-shot meth-
ods do, including Contextual Calibration), can be
computed as the difference of two log probabilities,
and is naturally applicable to datasets where the set
of valid answers varies between questions.

4 Multiple Choice Experiments

4.1 Setup
We use GPT-2 via the HuggingFace Transformers
library (Wolf et al., 2020) and GPT-3 via OpenAI’s
beta API.† We do not finetune any models, nor do
we alter their output. See Appendix B for examples
from each dataset in our templated format.

4.2 Datasets
We report results on 16 splits of 13 datasets, and
briefly describe each dataset here.

Continuation These datasets require the model
to select a continuation to previous text, making
them a natural way to test language models. Choice
of Plausible Alternatives (COPA) (Roemmele et al.,
2011) asks for cause and effect relationships, as
shown in Figure 2. StoryCloze (SC) (Mostafazadeh
et al., 2017) gives the model a choice between two

†https://beta.openai.com/

alternative endings to 5 sentence stories. Finally,
HellaSwag (HS) (Zellers et al., 2019) uses GPT-2
to generate, BERT to filter, and crowd workers to
verify possible continuations to a passage. Follow-
ing previous work (Brown et al., 2020) we report
development set numbers for COPA and HS.

Question Answering RACE-M & -H (R-M &
R-H) (Lai et al., 2017) are both drawn from En-
glish exams given in China, the former being given
to Middle Schoolers and the latter to High School-
ers. Similarly, ARC Easy & Challenge (ARC-E &
ARC-C) (Clark et al., 2018) are standardized tests
described as “natural, grade-school science ques-
tions,” with the “Easy” split found to be solvable
by either a retrieval or word co-occurrence system,
and the rest of the questions put in the “Challenge”
split. Open Book Question Answering (OBQA)
(Mihaylov et al., 2018) is similar to both of these,
but was derived using (and intended to be tested
with) a knowledge source (or “book”) available;
we do not make use of the given knowledge source,
following Brown et al. (2020). Finally, Common-
senseQA (CQA) (Talmor et al., 2019) leverages
CONCEPTNET (Speer et al., 2017) to encourage
crowd workers to write questions with challenging
distractors. We report development set numbers on
CQA because their test set is not public.

Open Set vs. Closed Set Datasets The above
datasets are all “open set” in that multiple choice
answers may be any string. Below we describe
“closed set” datasets with a fixed set of answers.

Boolean Question Answering BoolQ (BQ)
(Clark et al., 2019) poses yes/no (i.e. Boolean)
questions based on a multi-sentence passage.

Entailment Entailment datasets focus on the
question of whether a hypothesis sentence B is
entailed by a premise sentence A. Recognizing Tex-
tual Entailment (RTE) (Dagan et al., 2005) requires
predicting an “entailment” or “contradiction” label
while Commitment Bank (CB) (De Marneffe et al.,
2019) adds a “neutral” label. Following previous
work (Brown et al., 2020) we report development
set numbers for both RTE and CB.

Text Classification We consider three more com-
plex classification datasets: SST-2 & -5 (Socher
et al., 2013) for various granularities of sentiment
classification, AG’s News (Zhang et al., 2015)
(AGN) for topic classification, and TREC (Li and
Roth, 2002) for question classification.

https://beta.openai.com/


Multiple Choice Accuracy on GPT-3

Params. 2.7B 6.7B 13B 175B
Unc LM Avg PMIDC CC Unc LM Avg PMIDC Unc LM Avg PMIDC Unc LM Avg PMIDC CC

COPA 54.8 68.4 68.4 74.4 - 56.4 75.8 73.6 77.0 56.6 79.2 77.8 84.2 56.0 85.2 82.8 89.2 -
SC 50.9 66.0 68.3 73.1 - 51.4 70.2 73.3 76.8 52.0 74.1 77.8 79.9 51.9 79.3 83.1 84.0 -
HS 31.1 34.5 41.4 34.2 - 34.7 40.8 53.5 40.0 38.8 48.8 66.2 45.8 43.5 57.6 77.2 53.5 -
R-M 22.4 37.8 42.4 42.6 - 21.2 43.3 45.9 48.5 22.9 49.6 50.6 51.3 22.5 55.7 56.4 55.7 -
R-H 21.4 30.3 32.7 36.0 - 22.0 34.8 36.8 39.8 22.9 38.2 39.2 42.1 22.2 42.4 43.3 43.7 -
ARC-E 31.6 50.4 44.7 44.7 - 33.5 58.2 52.3 51.5 33.8 66.2 59.7 57.7 36.2 73.5 67.0 63.3 -
ARC-C 21.1 21.6 25.5 30.5 - 21.8 26.8 29.8 33.0 22.3 32.1 34.3 38.5 22.6 40.2 43.2 45.5 -
OBQA 10.0 17.2 27.2 42.8 - 11.4 22.4 35.4 48.0 10.4 28.2 41.2 50.4 10.6 33.2 43.8 58.0 -
CQA 15.9 33.2 36.0 44.7 - 17.4 40.0 42.9 50.3 16.4 48.8 47.9 58.5 16.3 61.0 57.4 66.7 -

BQ 62.2 58.5 58.5 53.5 - 37.8 61.0 61.0 61.0 62.2 61.1 61.1 60.3 37.8 62.5 62.5 64.0 -
RTE 47.3 48.7 48.7 51.6 49.5 52.7 55.2 55.2 48.7 52.7 52.7 52.7 54.9 47.3 56.0 56.0 64.3 57.8
CB 08.9 51.8 51.8 57.1 50.0 08.9 33.9 33.9 39.3 08.9 51.8 51.8 50.0 08.9 48.2 48.2 50.0 48.2
SST-2 49.9 53.7 53.76 72.3 71.4 49.9 54.5 54.5 80.0 49.9 69.0 69.0 81.0 49.9 63.6 63.6 71.4 75.8
SST-5 18.1 20.0 20.4 23.5 - 18.1 27.8 22.7 32.0 18.1 18.6 29.6 19.1 17.6 27.0 27.3 29.6 -
AGN 25.0 69.0 69.0 67.9 63.2 25.0 64.2 64.2 57.4 25.0 69.8 69.8 70.3 25.0 75.4 75.4 74.7 73.9
TREC 13.0 29.4 19.2 57.2 38.8 22.6 30.2 22.8 61.6 22.6 34.0 21.4 32.4 22.6 47.2 25.4 58.4 57.4

Table 1: Comparison of scoring algorithms when using GPT-3 for zero-shot inference on multiple choice questions.

Percent of Ties or Wins by Method

Method Unc LM Avg PMIDC CC

125M 12.50 6.25 12.50 68.75 -
350M 6.25 18.75 12.50 68.75 -
760M 6.25 6.25 12.50 75.00 -
1.6B 6.25 12.50 12.50 80.00 20.00

2.7B 6.25 6.25 6.25 86.66 0.00
6.7B 6.25 25.00 25.00 75.00 -
13B 6.25 18.75 18.75 68.75 -
175B 6.25 12.50 18.75 62.50 6.25

Table 2: Percentage of datasets that a given method pro-
duced the best score or was tied with other methods, ag-
gregated over each model size. The first four rows use
GPT-2 (full data available in the Appendix), while the
final four rows use GPT-3 and summarize data from Ta-
ble 1. Since ties are included, rows sometimes sum to
more than 100. CC is only measured on the 5 datasets
we use where Zhao et al. (2021) also report accuracies.

4.3 Results

We report zero-shot results for GPT-3 in Table 1,
with GPT-2 results available in Appendix A. A
summarized view is shown in Table 2, which aggre-
gates the percentage of splits where a given method
achieves the best score or ties for first-place. In
this summarized view it is clear that PMIDC con-
sistently outperforms other scoring methods when
assessed over a variety of datasets. The smallest
margin (in number of datasets won or tied) between
PMIDC and the best competing method is on GPT-3
175B with AVG, but that margin is over 40 percent-

Prompt Robustness on SST-2

Method Unc LM PMIDC

125M 49.9 0 56.8 7.3 58.8 7.6
350M 49.9 0 58.0 11.3 60.3 11.4
760M 49.9 0 57.0 9.2 67.7 13.4
1.6B 49.9 0 57.3 8.2 69.8 13.3

2.7B 49.9 0 56.1 9.0 66.2 15.7
6.7B 49.9 0 59.5 10.7 67.9 13.6
13B 49.9 0 63.0 14.9 71.7 16.1
175B 49.9 0 72.5 15.7 74.8 14.0

Table 3: The mean and standard deviations over the 15
templates considered for SST-2 in (Zhao et al., 2021).
AVG is excluded, as it is equivalent to LM since all the
given templates use single-token answers.

age points. This does not imply that PMIDC is
always better or that it will be better by a large mar-
gin, though it often is. It does suggest that PMIDC
is a significantly better bet on a new dataset.

4.4 Robustness

To verify that these trends hold across different
prompts, we report the mean and standard devia-
tion over the fifteen different prompts considered
in (Zhao et al., 2021) for SST-2. Table 3 shows,
PMIDC always maintains the highest mean, often
by a hefty margin. Scores are lower than in Table 1
because many of the prompts used are optimized
for few-shot rather than zero-shot scoring.



4-shot Inference Results

SST-2 CQA
Method Unc LM PMIDC Unc LM Avg PMIDC

125M 49.9 0 63.6 7.4 71.7 5.1 15.5 0 29.9 1.6 32.7 1.4 38.3 1.7
350M 49.9 0 76.3 13.8 76.4 8.1 16.5 0 37.6 2.3 40.4 2.3 45.7 2.4
760M 49.9 0 85.9 7.2 87.1 3.0 16.1 0 41.5 2.6 42.4 2.5 47.0 1.5
1.6B 49.9 0 85.4 1.7 89.4 4.0 16.0 0 46.2 1.5 47.7 1.9 52.3 2.1

2.7B 49.9 0 88.1 4.9 87.7 5.5 16.6 0 43.0 1.7 45.6 1.9 50.4 1.1
6.7B 49.9 0 92.9 2.1 79.8 6.9 16.9 0 52.3 1.4 53.4 1.0 56.5 1.6
13B 49.9 0 85.4 9.0 86.9 7.5 16.7 0 58.4 2.0 59.3 1.5 63.4 1.4
175B 49.9 0 89.9 5.5 95.5 0.7 16.5 0 69.1 1.9 69.4 0.8 72.0 0.9

Table 4: The mean and standard deviation for 5 ran-
domly sampled sets of 4 examples used for few-shot
inference. We include a closed answer dataset (SST-2)
and an open answer dataset (CQA). For SST-2 AVG is
equivalent to LM due to using single-token answers.

4.5 Few-shot

While our focus in this paper is on zero-shot scor-
ing, PMIDC is just as applicable to few-shot sce-
narios. In Table 4 we report 4-shot results on one
closed set dataset (SST-2) and one open set dataset
(CQA). We show the mean of 5 randomly sampled
sets of 4 examples that are used to prime the model
for the task, along with standard deviations. The
overall trend on both datasets clearly favors PMIDC,
though LM is superior for two models on SST-2.

5 Removing Surface Form Competition

What if we used the probability of the premise
given the hypothesis, P (x|yi), instead? While we
are still measuring the probability of a surface form
(e.g. “the bar closed.”), it is the same surface form
across different options (“It was crowded so”, “It
was 3 AM so”), eliminating the surface form com-
petition. yi and y′i can now both attain high scores
if they are both correct answers, by causing x to be
likely. We call this scoring-by-premise.

Causal language models like GPT-3 cannot mea-
sure this directly, because they are only capable of
conditioning on past tokens to predict future tokens.
We exploit the structure of the COPA dataset to cre-
ate “COPA Flipped” via a simple transformation,
shown in Figure 3. COPA consists of cause and
effect pairs (CAUSE so EFFECT, and EFFECT
because CAUSE). In the original dataset, what-
ever comes second (either CAUSE or EFFECT)
has two options that a model must choose between.
These can be reversed by switching CAUSE and
EFFECT, then substituting the natural inverse rela-
tion (“because”−→“so” and “so”−→“because” ).

Removing Surface Form Competition

COPA COPA Flipped
Method Unc LM Avg PMIDC Unc LM Avg PMIDC

125M 56.4 61.0 63.2 62.8 50.0 63.2 63.2 63.2
350M 55.8 67.0 66.0 70.0 50.0 66.4 66.4 66.4
760M 55.6 69.8 67.6 69.4 50.0 70.8 70.8 70.8
1.6B 56.0 69.0 68.4 71.6 50.0 73.0 73.0 73.0

2.7B 54.8 68.4 68.4 74.4 50.0 68.4 68.4 68.4
6.7B 56.4 75.8 73.6 77.0 50.0 76.8 76.8 76.8
13B 56.6 79.2 77.8 84.2 50.0 79.0 79.0 79.0
175B 56.0 85.2 82.8 89.2 50.0 83.6 83.6 83.6

Table 5: LM does better on COPA Flipped than COPA
because surface form competition is removed when
scoring-by-premise, see §5. Methods that don’t di-
rectly adjust for competing surface forms (LM and
AVG) have the same score as PMIDC on COPA Flipped.

5.1 Results
Table 5 shows scores on COPA and COPA Flipped
side-by-side. On COPA Flipped everything except
UNC produces the exact same result. This is be-
cause flipping the hypothesis and premise means
that it’s the context that changes and not the con-
tinuation. LM, AVG, and PMIDC only differ from
each other over different continuations, not over
different contexts for the same continuation.

On COPA Flipped all methods generally per-
form similarly to PMIDC on the unflipped version.
This is because surface form competition has been
eradicated: we are measuring how well different
prefixes condition a model to predict a fixed con-
tinuation rather than which continuation is highest
probability. Unlike LM, where different answers
compete for probability, in COPA Flipped it only
matters how likely each answer can make the ques-
tion. This is not subject to surface form competition
because there is only one string being so scored,
so it is not competing with any other strings for
probability mass.

Not all datasets are so easily flippable, so manu-
ally flipping individual questions to remove surface
form competition is not a generally applicable strat-
egy. Luckily, PMIDC is symmetric:

argmax
i

P (yi|x, domain)
P (yi|domain)

= argmax
i

P (x|yi, domain)
P (x|domain)

= argmax
i

P (x|yi, domain)

In theory, the answer selected by PMIDC should
be the same between COPA and COPA Flipped



Figure 3: In §5 we experiment with with flipping the premise and hypothesis so that the highest probability premise
is chosen as the answer, i.e. scoring-by-premise. The transformation above the dashed line shows the experimental
setup used in §5.1, while the extra distractor below the dashed line is used for illustrative purposes in §5.2.

as PMI is symmetric, though we expect some dif-
ferences due to “so” and “because” not being per-
fect inverses and shuffled references. Thus, PMIDC
does better on COPA than COPA Flipped, likely
due to more natural phrasing in the original dataset.

These results suggest that surface form compe-
tition is the primary cause of the depressed perfor-
mance of LM and AVG in comparison to PMIDC.

5.2 In-depth Example

Scoring-by-Premise Improves LM Figure 3
shows an example of transforming one question
from COPA to COPA Flipped. In the example de-
picted, when we use GPT-3 to calculate P , we get:

P (y1|x) > P (y2|x)

which is wrong, since bars usually close at fixed,
late-night closing times, rather than because of be-
ing overcrowded. However we also find that

P (ŷ|x̂2) > P (ŷ|x̂1)

P (y2|x)
P (y2|xdomain)

>
P (y1|x)

P (y1|xdomain)

indicating that scoring-by-premise causes the right
answer to be selected and that PMIDC successfully
simulates scoring by premise in this example.

Stability Over Valid Answers To see how
scoring-by-premise allows multiple correct op-
tions to achieve high scores, consider the slightly
perturbed y′2 and x̂′2 in Figure 3. The inequal-
ities shown above still hold when substituting

y2 → y′2 and x̂2 → x̂′2:

P (y1|x) > P (y′2|x)
P (ŷ|x̂′2) > P (ŷ|x̂1)

P (y′2|x)
P (y′2|xdomain)

>
P (y1|x)

P (y1|xdomain)

with the key difference that the conditional proba-
bility of y′2 is much lower:

logP (y2|x) ≈ −16
logP (y′2|x) ≈ −20

This is undesirable, as both y2 and y′2 are correct
answers with similar meanings. Yet, when scoring-
by-premise the conditional probability of ŷ is sta-
ble when substituting x̂2 → x̂′2:

logP (ŷ|x̂2) ≈ −12
logP (ŷ|x̂′2) ≈ −12

This suggests that eliminating surface form com-
petition allows different correct answers to score
well, as they are no longer competing for proba-
bility mass. Specifically, “it was 3 AM” and “it
was 3:30AM” score wildly differently in COPA but
nearly identically in COPA Flipped.

6 Analysis

Failure Cases There are three datasets where
PMIDC does not consistently outperform other
methods: HellaSwag, ARC Easy, and BoolQ. Sur-
prisingly, each is dominated by a different method.



HellaSwag is most amenable to AVG. On ex-
amination we find that HellaSwag is more focused
on the internal coherence of the hypotheses, rather
than external coherence, i.e. how much a premise
and hypothesis match. This is likely due to Hel-
laSwag being generated by GPT-2 (Radford et al.,
2019) and filtered with BERT, as it contains rela-
tively on-topic but intrinsically strange hypotheses
that humans can distinguish from natural data.

ARC Easy yields the highest scores to LM, i.e.,
selecting the highest probability option. Clark et al.
(2018) note that ARC Easy questions can be solved
by a retrieval or word co-occurrence baseline, while
examples that were answered incorrectly by both
were put into the Challenge split. This suggests a
bias towards a priori likely phrases. Manual inspec-
tion reveals many stock answers, e.g., “[clouds are
generated when] ocean water evaporates and then
condenses in the air,” supporting our hypothesis.

Finally, BoolQ, a reading comprehension dataset
in which all answers are either “yes” or “no”, is
best solved by an unconditional baseline. This is
because the dataset presents truly complex ques-
tions that require more reasoning than GPT-2 or 3
are capable of out of the box. Indeed, none of the
methods reported do better than the majority base-
line, except PMIDC with the largest GPT-3 model.

Why does length normalization work? Past
work offers little explanation for why AVG should
be a successful strategy, other than the intuition
that estimates are strongly length biased and re-
quire compensation. Length bias may be caused by
the final softmax layer of current language models
assigning too much probability mass to irrelevant
options at each time-step, as noted in open-ended
generation, character-level language modeling, and
machine translation (Holtzman et al., 2020; Al-
Rfou et al., 2019; Peters et al., 2019).

Another (not mutually exclusive) argument is
that length normalization may account for uncon-
ditional probability in a similar way to PMIDC.
Length normalization is often measured over Byte
Pair Encoding (BPE) tokens (Sennrich et al., 2016)
and BPE tends to produce vocabularies where most
tokens are equally frequent (Wang et al., 2020).
Recent evidence suggests that language is approxi-
mately uniformly information dense (Levy, 2018;
Levy and Jaeger, 2007; Jaeger, 2006). As such,
length in BPE tokens may correspond roughly to
a unigram estimate of log-probability, supposing
that BPE tokens have approximately uniform uni-

gram frequency. The adjustment made by AVG is
still somewhat different than PMIDC, (division of
log terms rather than subtraction) but could have a
similar effect, if length and probability correlate.

7 Discussion

Language Models are density estimation functions
that assign probability to every possible string, but
there are often many strings that could represent
a given idea equally well. Our key observation is
that a generative model assigning probability to a
string that represents a certain option isn’t equiva-
lent to selecting the concept an option corresponds
to. We expect surface form competition anywhere
that generative models are used where more than
one string could represent the same concept.

PMIDC aligns the predictions being made by the
model more closely with the actual task posed by
multiple choice questions: “choose the hypothesis
that explains the premise” rather than “generate
the exact surface form of the hypothesis”. From
this perspective, PMIDC does not go far enough,
because the model still cannot consider the given
set of options altogether when selecting its choice.
This matters when answers interact with each other,
e.g., “all of the above”.

8 Conclusion

We conduct a large-scale comparison of standard
and recent scoring functions for zero-shot infer-
ence across all GPT-2 and GPT-3 models. We show
that PMIDC consistently outperforms previous scor-
ing functions on a wide variety of multiple choice
datasets. We also argue that compensating for sur-
face form competition is the cause of this boost, by
demonstrating that other methods work just as well
as PMIDC when surface form competition is elim-
inated. In future work we would like to explore
how surface form competition affects generation,
as we hypothesize that it may be the cause of overly
generic outputs under high model uncertainty.
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A GPT-2 Results
Table 6 shows the results for zero-shot multiple
choice using GPT-2.

B Templates
Table 7 shows an example of each template used
for each dataset.

Multiple Choice Accuracy on GPT-2

Params. 125M 350M 760M 1.6B
Unc LM Avg PMIDC Unc LM Avg PMIDC Unc LM Avg PMIDC Unc LM Avg PMIDC CC

COPA 0.564 0.610 0.632 0.628 0.558 0.670 0.660 0.700 0.556 0.698 0.676 0.694 0.560 0.690 0.684 0.716 -
SC 0.495 0.600 0.615 0.670 0.489 0.630 0.667 0.716 0.503 0.661 0.688 0.734 0.512 0.676 0.715 0.763 -
HS 0.271 0.286 0.295 0.291 0.298 0.322 0.376 0.328 0.309 0.350 0.432 0.351 0.331 0.384 0.489 0.378 -
R-M 0.222 0.361 0.406 0.409 0.213 0.387 0.420 0.424 0.214 0.393 0.439 0.439 0.223 0.415 0.446 0.447 -
R-H 0.209 0.275 0.310 0.344 0.215 0.304 0.326 0.363 0.215 0.318 0.345 0.383 0.219 0.330 0.357 0.391 -
ARC-E 0.313 0.429 0.378 0.393 0.327 0.494 0.434 0.424 0.334 0.527 0.467 0.470 0.334 0.562 0.496 0.499 -
ARC-C 0.198 0.201 0.235 0.282 0.197 0.228 0.254 0.286 0.221 0.231 0.266 0.316 0.211 0.252 0.279 0.338 -
OBQA 0.11 0.164 0.272 0.324 0.108 0.186 0.302 0.386 0.108 0.194 0.296 0.432 0.114 0.224 0.348 0.460 -
CQA 0.170 0.255 0.307 0.364 0.165 0.309 0.352 0.418 0.170 0.333 0.368 0.445 0.171 0.386 0.385 0.478 -

BQ 0.622 0.588 0.588 0.511 0.622 0.608 0.608 0.497 0.622 0.580 0.580 0.467 0.622 0.563 0.563 0.495 -
RTE 0.527 0.516 0.516 0.498 0.473 0.531 0.531 0.549 0.473 0.531 0.531 0.542 0.473 0.477 0.477 0.534 0.485
CB 0.089 0.482 0.482 0.500 0.089 0.500 0.500 0.500 0.089 0.482 0.482 0.500 0.089 0.500 0.500 0.500 0.179
SST-2 0.499 0.636 0.636 0.671 0.499 0.802 0.802 0.862 0.499 0.770 0.770 0.856 0.499 0.840 0.840 0.875 0.820
SST-5 0.181 0.274 0.244 0.300 0.176 0.185 0.272 0.393 0.176 0.203 0.267 0.220 0.176 0.304 0.291 0.408 -
AGN 0.250 0.574 0.574 0.630 0.250 0.643 0.643 0.644 0.250 0.607 0.607 0.641 0.250 0.648 0.648 0.654 0.600
TREC 0.226 0.230 0.144 0.364 0.226 0.288 0.122 0.216 0.226 0.228 0.226 0.440 0.226 0.228 0.240 0.328 0.340

Table 6: Comparison of scoring algorithms when using GPT-2 for zero-shot inference on multiple choice questions.



Type Dataset Template

Continuation

COPA [The man broke his toe]P [because]DP [he got a hole in his sock.]UH
[I tipped the bottle]P [so]DP [the liquid in the bottle froze.]UH

StoryCloze [Jennifer has a big exam tomorrow. She got so stressed, she pulled an all-nighter. She went into class the next day, weary as can
be. Her teacher stated that the test is postponed for next week.]P [The story continues:]DP [Jennifer felt bittersweet about it.]UH

HellaSwag [A female chef in white uniform shows a stack of baking pans in a large kitchen presenting them. the pans]P [contain egg yolks
and baking soda.]UH

QA

RACE
[There is not enough oil in the world now. As time goes by, it becomes less and less, so what are we going to do when it runs out
[...].]P question: [According to the passage, which of the following statements is true]P[?]DP answer: [There is more petroleum
than we can use now.]UH

ARC [What carries oxygen throughout the body?]P [the answer is:]DP [red blood cells.]UH
OBQA [Which of these would let the most heat travel through?]P [the answer is:]DP [a steel spoon in a cafeteria.]UH
CQA [Where can I stand on a river to see water falling without getting wet?]P [the answer is:]DP [bridge.]UH

Boolean QA BoolQ title: [The Sharks have advanced to the Stanley Cup finals once, losing to the Pittsburgh Penguins in 2016 [...]]P question: [Have
the San Jose Sharks won a Stanley Cup?]P [answer:]DP [No.]UH

Entailment
RTE [Time Warner is the world’s largest media and Internet company.]P question: [Time Warner is the world’s largest company.]P [true

or false? answer:]DP [true.]UH

CB question: Given that [What fun to hear Artemis laugh. She’s such a serious child.]P Is [I didn’t know she had a sense of humor. ]P
true, false, or neither? [the answer is:]DP [true.]UH

Text
Classification

SST-2 “[Illuminating if overly talky documentary]P” [[The quote] has a tone that is]DP [positive.]UH
SST-5 “[Illuminating if overly talky documentary]P” [[The quote] has a tone that is]DP [neutral.]UH

AG’s News title: [Economic growth in Japan slows down as the country experiences a drop in domestic and corporate [...]]P summary:
[Expansion slows in Japan]P [topic:]DP [Sports.]UH

TREC [Who developed the vaccination against polio?]P [The answer to this question will be]DP [a person.]UH

Table 7: The templates used for each task, along with an example instance (with a single random candidate answer).
Original questions (premises) are colored blue, and original answers (hypotheses) are colored red. Long premises
are abbreviated with “[...]”. The full premises, conditional hypotheses and domain premises are marked in [·]P,
[·]UH, and [·]DP respectively. For a complete description of our templating methodology, please see our code at
https://github.com/peterwestuw/surface-form-competition

https://github.com/peterwestuw/surface-form-competition

